Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Toxicol Chem ; 43(1): 159-169, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37861383

RESUMO

Ceriodaphnia dubia is a standardized test organism for regulatory toxicity testing of surface waters and commercial chemicals because of its simplicity to culture and responsiveness to toxicants. For testing convenience, C. dubia is often cultured for extended periods in the laboratory with little knowledge of the impact on subsequent generations. Extended laboratory rearing could impact how they respond to stressors and decrease the accuracy of test results. The present study investigated if C. dubia cultured for an extended period were representative of three recently collected field populations by comparing their culturing characteristics and sensitivities to toxicants. For culturing characteristics, the field cultures were more challenging because they had shorter body lengths, fewer neonates, and higher mortality rates than the laboratory culture. Comparative chronic toxicity tests with sodium chloride and the neonicotinoid insecticide thiamethoxam indicated that the laboratory and field organisms did not differ much in their toxicological responses but did differ in the variability of responses (percentage of coefficient of variation). The differences between the laboratory and field cultures found in the present study highlight the challenges of addressing discrepancies between laboratory and field applications in existing standardized methodologies. Environ Toxicol Chem 2024;43:159-169. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Assuntos
Cladóceros , Inseticidas , Poluentes Químicos da Água , Animais , Humanos , Recém-Nascido , Tiametoxam , Inseticidas/toxicidade , Testes de Toxicidade , Substâncias Perigosas , Poluentes Químicos da Água/toxicidade
2.
Plants (Basel) ; 12(5)2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36903968

RESUMO

Silver nanoparticles (AgNPs) are the most popular engineered nanomaterials in consumer products due to their antimicrobial properties. They enter aquatic ecosystems via insufficient purified wastewaters from manufacturers or consumers. AgNPs inhibit growth of aquatic plants, including duckweeds. Growth media nutrient concentration and initial duckweed frond density can affect growth. However, it is not well understood how frond density affects nanoparticle toxicity. We investigated the toxicity of 500 µg/L AgNPs and AgNO3 on Lemna minor at different initial frond densities (20, 40, and 80 fronds per 28.5 cm2) over 14 days. Plants were more sensitive to silver at high initial frond densities. Growth rates based on frond number and area were lower for plants at 40 and 80 initial frond density in both silver treatments. AgNPs had no effect on frond number, biomass, and frond area at 20 initial frond density. However, AgNO3 plants had lower biomass than control and AgNP plants at 20 initial frond density. Competition and crowding at high frond densities resulted in reduced growth when silver was present, therefore plant density and crowding effects should be considered in toxicity studies.

3.
Environ Pollut ; 266(Pt 1): 115074, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32629209

RESUMO

Several populations of the amphipod, Hyalella azteca, have developed resistance to pyrethroid insecticides due to non-target exposure, but the dominance of the resistance trait is unknown. The current study investigated the dominance level of point mutations in natural populations of insecticide-resistant H. azteca and determined whether H. azteca from different clades with and without resistant alleles can hybridize and produce viable offspring. A parent generation (P0) of non-resistant homozygous wild type H. azteca was crossbred with pyrethroid-resistant homozygous mutant animals and the tolerance of the filial 1 (F1) generation to the pyrethroid insecticide, permethrin, was measured. Then the genotypes of the F1 generation was examined to assure heterozygosity. The resistant parents had permethrin LC50 values that ranged from 52 to 82 times higher than the non-resistant animals and both crossbreeding experiments produced heterozygous hybrid offspring that had LC50 values similar to the non-resistant H. azteca parent. Dominance levels calculated for each of the crosses showed values close to 0, confirming that the L925I and L925V mutations were completely recessive. The lack of reproduction by hybrids of the C x D breeding confirmed that these clades are reproductively isolated and therefore introgression of adaptive alleles across these clades is unlikely. Potential evolutionary consequences of this selection include development of population bottlenecks, which may arise leading to fitness costs and reduced genetic diversity of H. azteca.


Assuntos
Anfípodes , Inseticidas/análise , Piretrinas , Poluentes Químicos da Água/análise , Animais , Hibridização Genética , Resistência a Inseticidas , Permetrina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...